数据结构课上笔记14

图是一种:   数据元素间存在多对多关系的数据结构   加上一组基本操作构成的抽象数据类型。

图 (Graph) 是一种复杂的非线性数据结构,由顶点集合及顶点间的关系(也称弧或边)集合组成。可以表示为: G=(V, VR)  

其中 V 是顶点的有穷非空集合;

VR 是顶点之间   关系的有穷集合,也叫做弧或边集合。

弧是顶点的有序对,边是顶点的无序对。

 

特点:(相对于线性结构)

顶点之间的关系是任意的 

图中任意两个顶点之间都可能相关

顶点的前驱和后继个数无限制

 

相关概念:

 

顶点(Vertex):图中的数据元素。线性表中我们把数据元素叫元素,树中将数据元素叫结点。

边:顶点之间的逻辑关系用边来表示,边集可以是空的。

 

无向边(Edge):若顶点V1到V2之间的边没有方向,则称这条边为无向边。

无向图(Undirected graphs):图中任意两个顶点之间的边都是无向边。(A,D)=(D,A)

无向图中边的取值范围:0≤e≤n(n-1)/2

有向边:若从顶点V1到V2的边有方向,则称这条边为有向边,也称弧(Arc)。用<V1,V2>表示,V1为狐尾(Tail),V2为弧头(Head)。(V1,V2)≠(V2,V1)。

有向图(Directed graphs):图中任意两个顶点之间的边都是有向边。

有向图中弧的取值范围:0≤e≤n(n-1)

   注意:无向边用“()”,而有向边用“< >”表示。

 

简单图:图中不存在顶点到其自身的边,且同一条边不重复出现。

无向完全图:无向图中,任意两个顶点之间都存在边。

有向完全图:有向图中,任意两个顶点之间都存在方向互为相反的两条弧。

稀疏图:有很少条边。

稠密图:有很多条边。

 

邻接点:若 (v, v´) 是一条边,则称顶点 v 和 v´互为 邻接点,或称 v 和 v´相邻接;称边 (v, v´) 依附于顶点 v 和 v´,或称 (v, v´) 与顶点 v 和 v´ 相关联。

 

权(Weight):与图的边或弧相关的数。

网(Network):带权的图。

子图(Subgraph):假设G=(V,{E})和G‘=(V',{E'}),如果V'包含于V且E'包含于E,则称G'为G的子图。

 

 入度:有向图中以顶点 v 为头的弧的数目称为 v 的入度,记为:ID(v)。  

出度:有向图中以顶点 v 为尾的弧的数目称为 v 的出度,记为:OD(v)。

度(Degree):无向图中,与顶点V相关联的边的数目。有向图中,入度表示指向自己的边的数目,出度表示指向其他边的数目,该顶点的度等于入度与出度的和。

 

回路(环):第一个顶点和最后一个顶点相同的路径。

简单路径:序列中顶点(两端点除外)不重复出现的路径。 

简单回路(简单环):前后两端点相同的简单路径。

路径的长度:一条路径上边或弧的数量。

 

连通:从顶点 v 到 v´ 有路径,则说 v  和 v´ 是连通的。

连通图:图中任意两个顶点都是连通的。

连通分量:无向图的极大连通子图(不存在包含它的 更大的连通子图);

任何连通图的连通分量只有一个,即其本身;非连通图有多个连通分量(非连通图的每一个连通部分)。

强连通图: 任意两个顶点都连通的有向图。 

强连通分量:有向图的极大强连通子图;任何强连通 图的强连通分量只有一个,即其本身;非强连通图有多个 强连通分量。

 

生成树:所有顶点均由边连接在一起但不存在回路的图。(n个顶点n-1条边)

 

 

 

©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值