动态规划基础水题提纲

提纲

汉诺塔

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

 

动态规划:

1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

2) 无后效性。当前的若干个状态值一旦确定,则此后过程 的演变就只和这若干个状态的值有关,和之前是采取哪 种手段或经过哪条路径演变到当前的这若干个状态,没 有关系。 

 

 

 

 

例子: 

                 7

 

             3    8        

 

          8    1    0    

 

       2    7    4    4

 

     4    5   2   6     5  

 

 

在上面的数字三角形中寻找一条从顶部到底边的路径,使得 路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 

 

---------------------

把原问题分解为若干个子问题,子问题和原问题形式相同 或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。

 

 

 

1)有一只兔子,从出生后第2个月起每个月都生一只兔子,小兔子长到第2个月后每个月又生一只兔子,假如兔子都不死,问每个月的兔子总数为多少?

 

 

2)有一只兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第三个月后每个月又生一只兔子,假如兔子都不死,问每个月的兔子总数为多少?

 

3)有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

 

4)我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

 

  1. 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

 

6)一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 

 

 

 

7)有一个X*Y的网格,小团要在此网格上从左上角到右下角,只能走格点且只能向右或向下走。请设计一个算法,计算小团有多少种走法。给定两个正整数int x,int y,请返回小团的走法数目。

推荐读物:

背包问题

背包九讲

 

©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值